2(3^2x-5)-4=11

Simple and best practice solution for 2(3^2x-5)-4=11 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(3^2x-5)-4=11 equation:



2(3^2x-5)-4=11
We move all terms to the left:
2(3^2x-5)-4-(11)=0
We add all the numbers together, and all the variables
2(3^2x-5)-15=0
We multiply parentheses
6x^2-10-15=0
We add all the numbers together, and all the variables
6x^2-25=0
a = 6; b = 0; c = -25;
Δ = b2-4ac
Δ = 02-4·6·(-25)
Δ = 600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{600}=\sqrt{100*6}=\sqrt{100}*\sqrt{6}=10\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{6}}{2*6}=\frac{0-10\sqrt{6}}{12} =-\frac{10\sqrt{6}}{12} =-\frac{5\sqrt{6}}{6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{6}}{2*6}=\frac{0+10\sqrt{6}}{12} =\frac{10\sqrt{6}}{12} =\frac{5\sqrt{6}}{6} $

See similar equations:

| 9-2x=28 | | x=2=2x-15 | | 6x2+27x-15=0 | | -4=v/2-9 | | 4n-9=+9 | | -21m+7-4m=-8m-27 | | 5x+80=915 | | 15x-18=-63 | | 3x+7x=13 | | x-12=9x+28 | | 8(x=4)12x-4 | | X-10=3x-15 | | 10x2+3x+1=0 | | -19x-13=-165 | | 2(4x+1)=-3=8x+-1 | | 7m-19=9 | | 4(5x-2)=10x | | 10-3x=8x+65 | | 3x+7=13x | | 8x2-23x+10=0 | | 22=8(x+3) | | 12x+24=20x | | 60-5x=x+8 | | -5(2+4x)=-10(x-10) | | 5a+1=2a-9 | | 2^x=1/28 | | 27n=7 | | 5(x-3)+6x=18 | | y=2+11y-6y+y2. | | 5^(x+9)=9^x | | 19h−13h=6 | | x^2+11x+8=-x^2+3 |

Equations solver categories